题目内容
【题目】综合题
(1)【探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .
(2)【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 . (用含a,h的代数式表示)
(3)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
(4)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.
【答案】
(1)
(2)
(3)
解:解:如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,
由题意知四边形ABCH是矩形,
∵AB=32,BC=40,AE=20,CD=16,
∴EH=20、DH=16,
∴AE=EH、CD=DH,
在△AEF和△HED中,
∵ ,
∴△AEF≌△HED(ASA),
∴AF=DH=16,
同理△CDG≌△HDE,
∴CG=HE=20,
∴BI= =24,
∵BI=24<32,
∴中位线IK的两端点在线段AB和DE上,
过点K作KL⊥BC于点L,
由(1)知矩形的最大面积为 ×BGBF= ×(40+20)×(32+16)=720,
答:该矩形的面积为720
(4)
如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,
∵tanB=tanC= ,
∴∠B=∠C,
∴EB=EC,
∵BC=108cm,且EH⊥BC,
∴BH=CH= BC=54cm,
∵tanB= = ,
∴EH= BH= ×54=72cm,
在Rt△BHE中,BE= =90cm,
∵AB=50cm,
∴AE=40cm,
∴BE的中点Q在线段AB上,
∵CD=60cm,
∴ED=30cm,
∴CE的中点P在线段CD上,
∴中位线PQ的两端点在线段AB、CD上,
由【拓展应用】知,矩形PQMN的最大面积为 BCEH=1944cm2,
答:该矩形的面积为1944cm2
【解析】解:(1)【探索发现】
∵EF、ED为△ABC中位线,
∴ED∥AB,EF∥BC,EF= BC,ED= AB,
又∠B=90°,
∴四边形FEDB是矩形,
则 = = = ,
所以答案是: ;
⑵【拓展应用】
∵PN∥BC,
∴△APN∽△ABC,
∴ = ,即 = ,
∴PN=a﹣ PQ,
设PQ=x,
则S矩形PQMN=PQPN=x(a﹣ x)=﹣ x2+ax=﹣ (x﹣ )2+ ,
∴当PQ= 时,S矩形PQMN最大值为 ,
所以答案是: ;
【考点精析】本题主要考查了三角形中位线定理和矩形的性质的相关知识点,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.