题目内容
如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点.若两圆的半径分别为3cm和5cm,则AB的长为_____cm.
8
连接OC、OA;由切线的性质知:OC⊥AB;在Rt△OAC中,可由勾股定理求得AC的长;根据垂径定理知:AB=2AC,由此得解.
解:连接OC、OA,
∵AB切⊙O于C,
∴OC⊥AB,
∴AB=2AC;
∵在Rt△OAC中,OA=5cm,OC=3cm,
∴AC==4cm,
∴AB=2AC=8cm.
解:连接OC、OA,
∵AB切⊙O于C,
∴OC⊥AB,
∴AB=2AC;
∵在Rt△OAC中,OA=5cm,OC=3cm,
∴AC==4cm,
∴AB=2AC=8cm.
练习册系列答案
相关题目