题目内容
【题目】如图,在△ABC中,AD平分∠BAC , 按如下步骤作图:
第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF .
若BD=6,AF=4,CD=3,则BE的长是( ).
A.2
B.4
C.6
D.8
【答案】D
【解析】:∵根据作法可知:MN是线段AD的垂直平分线,
∴AE=DE , AF=DF ,
∴∠EAD=∠EDA ,
∵AD平分∠BAC ,
∴∠BAD=∠CAD ,
∴∠EDA=∠CAD ,
∴DE∥AC ,
同理DF∥AE ,
∴四边形AEDF是菱形,
∴AE=DE=DF=AF ,
∵AF=4,
∴AE=DE=DF=AF=4,
∵DE∥AC ,
∴ ,
∵BD=6,AE=4,CD=3,
∴ ,
∴BE=8.
故选:D.
【考点精析】本题主要考查了线段垂直平分线的性质和平行线分线段成比例的相关知识点,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;三条平行线截两条直线,所得的对应线段成比例才能正确解答此题.
练习册系列答案
相关题目