题目内容
22、已知:如图,在△ABC中,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H.求证:
(1)四边形FBGH是平行四边形;
(2)四边形ABCH是平行四边形.
(1)四边形FBGH是平行四边形;
(2)四边形ABCH是平行四边形.
分析:(1)由三角形中位线知识可得DF∥BG,GH∥BF,∴四边形FBGH是平行四边形.
(2)连接BH,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相平分的四边形是平行四边形得证四边形ABCH是平行四边形.
(2)连接BH,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相平分的四边形是平行四边形得证四边形ABCH是平行四边形.
解答:证明:(1)∵点F、G是边AC的三等分点,∴F、G分别是AG、CF的中点,
∵点D是AB的中点,∴DF∥BG,即FH∥BG.
同理:GH∥BF.
∴四边形FBGH是平行四边形.
(2)连接BH,交FG于点O.
∵四边形FBGH是平行四边形,
∴OB=OH,OF=OG.
∵AF=CG,∴OA=OC.
∴四边形ABCH是平行四边形.
∵点D是AB的中点,∴DF∥BG,即FH∥BG.
同理:GH∥BF.
∴四边形FBGH是平行四边形.
(2)连接BH,交FG于点O.
∵四边形FBGH是平行四边形,
∴OB=OH,OF=OG.
∵AF=CG,∴OA=OC.
∴四边形ABCH是平行四边形.
点评:本题考查平行四边形的判定.注意运用三角形的中位线的知识.
练习册系列答案
相关题目