题目内容
【题目】如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
(1)求m、n的值;
(2)求直线AC的解析式.
【答案】(1)m=﹣2,n=﹣2;(2)y=﹣x+1.
【解析】
试题分析:(1)由题意,根据对称性得到B的横坐标为1,确定出C的坐标,根据三角形AOC的面积求出A的纵坐标,确定出A坐标,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;
(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出直线AC的解析式.
解:(1)∵直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,
∴B点横坐标为1,即C(1,0),
∵△AOC的面积为1,
∴A(﹣1,2),
将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;
(2)设直线AC的解析式为y=kx+b,
∵y=kx+b经过点A(﹣1,2)、C(1,0)
∴,
解得k=﹣1,b=1,
∴直线AC的解析式为y=﹣x+1.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目