题目内容

【题目】二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是

【答案】P>Q
【解析】解:∵抛物线的开口向下,
∴a<0,
∵﹣ >0,
∴b>0,
∴2a﹣b<0,
∵﹣ =1,
∴b+2a=0,
x=﹣1时,y=a﹣b+c<0.
∴﹣ b﹣b+c<0,
∴3b﹣2c>0,
∵抛物线与y轴的正半轴相交,
∴c>0,
∴3b+2c>0,
∴p=3b﹣2c,
Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,
∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0
∴P>Q,
所以答案是:P>Q.
【考点精析】认真审题,首先需要了解二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小),还要掌握二次函数图象以及系数a、b、c的关系(二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c))的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网