题目内容

【题目】在平面直角坐标系中,抛物线轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.

(1)求抛物线的解析式和顶点C的坐标;

(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;

(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.

【答案】(1),(-1,4) (2)(-2,3),

(3)(-4,-5),()

【解析】

(1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax2+bx+3求出即可;(2)求出直线AD的解析式,分别过点C、H作AD的平行线,与抛物线交于点E,利用ADE与ACD面积相等,得出直线EC和直线EH的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P在对称轴左侧;②点P在对称轴右侧.

(1)设抛物线的解析式为

∵抛物线过点A(-3,0),B(1,0),D(0,3),

,解得,a=-1,b=-2,c=3,

∴抛物线解析式为,顶点C(-1,4);

(2)如图1,∵A(-3,0),D(0,3),

∴直线AD的解析式为y=x+3,

设直线AD与CH交点为F,则点F的坐标为(-1,2)

∴CF=FH,

分别过点C、H作AD的平行线,与抛物线交于点E,

由平行间距离处处相等,平行线分线段成比例可知,△ADE与△ACD面积相等,

∴直线EC的解析式为y=x+5,

直线EH的解析式为y=x+1,

分别与抛物线解析式联立,得

解得点E坐标为(-2,3),

(3)①若点P在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH,

分别过点C、P作x轴的平行线,过点Q作y轴的平行线,交点为M和N,

由△CQM∽△QPN,

=2,

∵∠MCQ=45°,

设CM=m,则MQ=m,PN=QN=2m,MN=3m,

∴P点坐标为(-m-1,4-3m),

将点P坐标代入抛物线解析式,得

解得m=3,或m=0(与点C重合,舍去)

∴P点坐标为(-4,-5);

②若点P在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH,

延长CD交x轴于M,∴M(3,0)

过点M作CM垂线,交CP延长线于点F,作FNx轴于点N,

∵∠MCH=45°,CH=MH=4

∴MN=FN=2,

∴F点坐标为(5,2),

∴直线CF的解析式为y=

联立抛物线解析式,得,解得点P坐标为(),

综上所得,符合条件的P点坐标为(-4,-5),().

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网