题目内容
【题目】如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));正方形A2B2C2D2的面积为________,以此下去…,则正方形AnBnCnDn的面积为________.
【答案】25; 5n
【解析】
根据三角形的面积公式,知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.
如图(1),已知小正方形ABCD的面积为1,则把它的各边延长一倍后,三角形AA1B1的面积是1,新正方形A1B1C1D1的面积是5,从而正方形A2B2C2D2的面积为5×5=25,正方形AnBnCnDn的面积为5n.
故答案为25,5n.
练习册系列答案
相关题目