题目内容
【题目】16的平方根是( )
A. ±4 B. 4 C. 8 D. 2
【答案】A
【解析】
根据平方根的定义即可求解.
解:∵(±4)2=16,
∴16的平方根是:±4.
故选:A.
【题目】已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.
【题目】为推广阳光体育“大课间”活动,某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两幅统计图中的B补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
【题目】某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示: (1)填空:甲种收费的函数关系式是 . 乙种收费的函数关系式是 .(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?
【题目】“买一张彩票,中一等奖”是 (填“必然”、“不可能”或“随机”)事件.
【题目】如图,菱形ABCD中,边长为2,∠B=60°,将△ACD绕点C旋转,当AC(即A′C)与AB交于一点E,CD(即CD′)同时与AD交于一点F时,点E,F和点A构成△AEF。试探究△AEF的周长是否存在最小值,如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
【题目】下列计算正确的是( )
A.7x-6x=1B.4m+3m2=7m3C.-3(m-n)=-3m+3nD.-(x-y)=-x-y
【题目】如图,在平面直角坐标系xOy中,已知正比例函数y= x与一次函数y=﹣x+7的图象交于点A. (1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y= x和y=﹣x+7的图象于点B、C,连接OC.若BC= OA,求△OBC的面积.
【题目】在可以不同年的条件下,下列结论叙述正确的是( )A.400个人中至少有两人生日相同B.300个人至少有两人生日相同C.300个人一定没有两人生日相同D.300个人一定有两人生日相同