题目内容

【题目】如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到1米,参考数据 ≈1.4, ≈1.7)

【答案】解:在直角△ABD中,BD= = =41 (米),

则DF=BD﹣OE=41 ﹣10(米),

CF=DF+CD=41 ﹣10+40=41 +30(米),

则在直角△CEF中,EF=CFtanα=41 +30≈41×1.7+30=99.7≈100(米).

答:点E离地面的高度EF是100米


【解析】在直角△ABD中,利用三角函数求得BD的长,则CF的长即可求得,然后在直角△CEF中,利用三角函数求得EF的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网