题目内容
【题目】已知A=x-y+1,B=x+y+1,C=(x+y)(x-y)+2x,两同学对x、y分别取了不同的值,求出的A、B、C的值不同,但A×B-C的值却总是一样的.因此两同学得出结论:无论x、y取何值,A×B-C的值都不发生变化.
【答案】正确,理由详见解析.
【解析】
先计算A×B-C,根据整式的运算法则,A×B-C的结果中不含x、y,故其值与x、y无关.
解:正确.
A×B-C=(x-y+1)(x+y+1)-[(x+y)(x-y)+2x]
=(x+1-y)(x+1+y)-(x2-y2+2x)
=(x+1)2-y2-x2+y2-2x
=x2+2x+1-y2-x2+y2-2x,
=1;
所以x、y的取值与A×B-C的值无关.
练习册系列答案
相关题目
【题目】某种油菜籽在相同条件下发芽试验的结果如下:
每批粒数 | 100 | 400 | 800 | 1000 | 2000 | 4000 |
发芽的频数 | 85 | 300 | 652 | 793 | 1604 | 3204 |
发芽的频率 | 0.850 | 0.750 | 0.815 | 0.793 | 0.802 | 0.801 |
根据以上数据可以估计该油菜种子发芽的概率为_______(精确到0.1).