题目内容
【题目】已知关于的一元二次方程有两个实数根.
(1)求实数的取值范围;
(2)若方程的两实数根满足,求的值。
【答案】(1)k≤;(2)k=-3.
【解析】
(1) 把方程化为一般形式,根据方程有两个实数根可以得到△≥0,从而求得k的取值范围;(2)利用根与系数的关系可得x1+x2=2k-2,x1x2=k2,将两根之和和两根之积代入,即可求k的值.
x2-2kx+k2+2=2(1-x),
整理得x2-(2k-2)x+k2=0.
(1)∵方程有两个实数根x1,x2.
∴△=(2k-2)2-4k2≥0,
解得k≤;
(2)由根与系数关系知:
x1+x2=2k-2,x1x2=k2,
又|x1+x2|=x1x2-1,代入得,
|2k-2|=k2-1,
∵k≤,
∴2k-2<0,
∴|2k-2|=k2-1可化简为:k2+2k-3=0.
解得k=1(不合题意,舍去)或k=-3,
∴k=-3.
练习册系列答案
相关题目
【题目】某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:):
第1批 | 第2批 | 第3批 | 第4批 | 第5批 |
(1)接送完第5批客人时,该驾驶员在公司什么方向,距离公司多远?
(2)若该出租车的收费标准为:行驶路程不超过,收费10元;超过,对超过部分另加收每千米1.8元.当送完第5批客人时,该驾驶员共收到车费多少元?