题目内容
【题目】在矩形ABCD中,点P在AD上,AB=2,AP=1.直角尺的直角顶点放在点P处,直角尺的两边分别交AB、BC于点E、F,连接EF(如图1).
(1)当点E与点B重合时,点F恰好与点C重合(如图2).
①求证:△APB∽△DCP;
②求PC、BC的长.
(2)探究:将直角尺从图2中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中(图1是该过程的某个时刻),观察、猜想并解答:
① tan∠PEF的值是否发生变化?请说明理由.
② 设AE=x,当△PBF是等腰三角形时,请直接写出x的值.
【答案】(1)①证明见解析;②PC=2,BC=5;(2)①tan∠PEF的值不变;②x=或x=或x=.
【解析】
(1)①由勾股定理求BP,利用互余关系证明△APB∽△DCP;②利用相似比求PC,DP, 再根据BC=AD=AP+DP即可求得BC的长;
(2)①tan∠PEF的值不变.理由为:过F作FG⊥AD,垂足为点G. 则四边形ABFG是矩形,同(1)的方法证明△APE∽△GFP,得相似比,再利用锐角三角函数的定义求值;②利用相似比求GP,再矩形性质求出BF,△PBF是等腰三角形,分三种情况讨论:(Ⅰ) 当PB=PF时,根据BF=2AP求值;当BF=BP时,(Ⅱ)根据BP=求值;(Ⅲ) 当BF=PF时,根据PF=即可求出x值.
解:(1)①如图3.2,
∵四边形ABCD是矩形,
∴∠A=∠D=90°,CD=AB=2,
∴在Rt△ABC中,
∠1+∠2=90°,BP=.
又∵∠BPC=90°,
∴∠3+∠2=90°,
∴∠1=∠3.
∴△APB∽△DCP.
②由△APB∽△DCP.
∴,即.
∴PC=2,DP=4.
∴BC=AD=AP+DP=5.
(2)①tan∠PEF的值不变.
理由如下:
如图3.1,过F作FG⊥AD,垂足为点G. 则四边形ABFG是矩形.
∴∠A=∠PGF=90°,FG=AB=2,
∴在Rt△APE中,∠1+∠2=90°,
又∵∠EPF=90°,∴∠3+∠2=90°,
∴∠1=∠3.
∴△APE∽△GFP,
∴.
∴在Rt△EPF中,tan∠PEF=2.
∴tan∠PEF的值不变.
②由△APE∽△GFP.
∴.
∴GP=2AE=2x,
∵四边形ABFG是矩形.
∴BF=AG=AP+GP=2x+1.
△PBF是等腰三角形,分三种情况讨论:
(Ⅰ)当PB=PF时,点P在BF的垂直平分线上.
∴ BF=2AP. 即2x+1=2,
∴x=.
(Ⅱ)当BF=BP时,
BP=BP=
∴2x+1=.
∴x=.
(Ⅲ)当BF=PF时,
∵PF=,
∴(2x)2+22=(2x+1)2,
∴x=.