题目内容
【题目】一张正方形桌子可坐4人,按图1—图3的方式将桌子拼在一起并安排人员就坐.
(1)两张桌子拼在一起可做 人,三张桌子拼在一起可坐 人,张桌子拼在一起可坐 人
(2)一家酒楼有60张这样的桌子,按照图1—图3方式每4张拼成一个大桌子,则60张桌子可拼成15张大桌子,共可坐 人
(3)在问题(2)中,若每4张桌子拼成一个大的正方形桌子,则可坐 人
【答案】(1),, ;(2)150;(3)120
【解析】
(1)观察摆放的桌子,不难发现;在1张桌子坐4人的基础上,多一张桌子多2个人,从而推出n张桌子时,有4+2(n-1)=2n+2,代入即可求解;
(2)先利用(1)题得出的规律算出一张大桌子能坐10个人,则15张大桌子可以坐15×10=150人;
(3)4张桌子拼成一个大正方形的桌子时可以坐8个人,15×8=120人.
解:(1)4+2=6,6+2=8,4+2(n-1)=2n+2;
(2)(2×4+2)×15=150(人)
(3)2×4×15=120(人)
练习册系列答案
相关题目
【题目】某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
班级 | 平均数(分) | 中位数 | 众数 |
九(1) | 85 | 85 | |
九(2) | 80 |
(1)根据图示填写上表;
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.