题目内容

【题目】在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程 ,操作步骤是:
第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。

(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹)
(2)结合图1,请证明“第三步”操作得到的m就是方程 的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程 的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当 与a,b,c之间满足怎样的关系时,点P( ),Q( )就是符合要求的一对固定点?

【答案】
(1)

解:如图2所示:


(2)

证明:在图1中,过点B作BD⊥x轴,交x轴于点D.

根据题意可证△AOC∽△CDB.

.

.

∴m(5-m)=2.

∴m2-5m+2=0.

∴m是方程x2-5x+2=0的实数根.


(3)

解:方程ax2+bx+c=0(a≠0)可化为

x2+x+=0.

模仿研究小组作法可得:A(0,1),B(-)或A(0,),B(-,c)等.


(4)

解:以图3为例:P(m1,n1)Q(m2,n2),

设方程的根为x,根据三角形相似可得.=.

上式可化为x2-(m1+m2)x+m1m2+n1n2=0.

又ax2+bx+c=0,

即x2+x+=0.

比较系数可得:m1+m2=-.

m1m2+n1n2=.


【解析】(1)根据题目中给的操作步骤操作即可得出图2中的图.
(2)在图1中,过点B作BD⊥x轴,交x轴于点D.依题意可证△AOC∽△CDB.然后根据相似三角形对应边的比相等列出式子,化简后为m2-5m+2=0,从而得证。
(3)将方程ax2+bx+c=0(a≠0)可化为x2+x+=0.模仿研究小组作法即可得答案。
(4)以图3为例:P(m1,n1)Q(m2,n2),设方程的根为x,根据三角形相似可得.=.化简后为x2-(m1+m2)x+m1m2+n1n2=0.
又x2+x+=0.再依据相对应的系数相等即可求出。
【考点精析】利用根与系数的关系和相似三角形的判定与性质对题目进行判断即可得到答案,需要熟知一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网