题目内容
【题目】如图1,已知∠AOB=,∠AOC=,OE是∠AOB内部的一条射线,且OF平分∠AOE.
(1)若∠EOB=,求∠COF的度数;
(2)若∠COF=,求∠EOB的度数(用含n的式子表示);
(3)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,∠COF与∠EOB有怎样的数量关系?请说明理由.
【答案】(1)20°;(2)70°-2n°;(3)∠EOB=70°+2∠COF,理由见解析.
【解析】
(1)先求出∠AOE,再根据角平分线的定义求出∠AOF,然后根据∠COF=∠AOF-∠AOC代入数据计算即可得解;
(2)先求出∠AOF,再根据角平分线的定义求出∠AOE,然后根据∠EOB=∠AOB-∠AOE计算即可得解;
(3)设∠COF=n°,先表示出∠AOF,然后根据角平分线的定义求出∠AOE,再根据∠EOB=∠AOB-∠AOE代入计算即可得解.
解:(1)∵∠AOB=150°,∠EOB=30°,
∴∠AOE=∠AOB-∠EOB=150°-30°=120°,
∵OF平分∠AOE,
∴∠AOF=∠AOE=×120°=60°,
∴∠COF=∠AOF-∠AOC,
=60°-40°,
=20°;
(2)∵∠AOC=40°,∠COF=n°,
∴∠AOF=∠AOC+∠COF=40°+n°,
∵OF平分∠AOE,
∴∠AOE=2∠AOF=2(40°+n°)=80°+2n°,
∴∠EOB=∠AOB-∠AOE=150°-(80°+2n°)=70°-2n°;
(3)如图所示:∠EOB=70°+2∠COF.
证明:设∠COF=n°,则∠AOF=∠AOC-∠COF=40°-n°,
又∵OF平分∠AOE,
∴∠AOE=2∠AOF=80°-2n°.
∴∠EOB=∠AOB-∠AOE=150°-(80°-2n°)=(70+2n)°
即∠EOB=70°+2∠COF.