题目内容

【题目】如图,△ABC中,∠C=90°,∠A=30°.

(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.连接BD,求证:BD平分∠CBA.

【答案】(1)作图见解析(2)证明见解析

【解析】

试题分析:(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;

(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.

试题解析:(1)如图所示,DE就是要求作的AB边上的中垂线;

(2)∵DE是AB边上的中垂线,∠A=30°,

∴AD=BD,

∴∠ABD=∠A=30°,

∵∠C=90°,

∴∠ABC=90°﹣∠A=90°﹣30°=60°,

∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,

∴∠ABD=∠CBD,

∴BD平分∠CBA.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网