题目内容
【题目】如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.连接BD,求证:BD平分∠CBA.
【答案】(1)作图见解析(2)证明见解析
【解析】
试题分析:(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;
(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.
试题解析:(1)如图所示,DE就是要求作的AB边上的中垂线;
(2)∵DE是AB边上的中垂线,∠A=30°,
∴AD=BD,
∴∠ABD=∠A=30°,
∵∠C=90°,
∴∠ABC=90°﹣∠A=90°﹣30°=60°,
∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,
∴∠ABD=∠CBD,
∴BD平分∠CBA.
练习册系列答案
相关题目