题目内容
【题目】如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高22米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).
(1)求办公楼AB的高度;
(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.
(参考数据:sin22°≈ ,cos22°≈ ,tan22≈ )
【答案】
(1)
解:过点E作EM⊥AB于点M,设AB=x,
在Rt△ABF中,∵∠AFB=45°,
∴BF=AB=x,
∴BC=BF+FC=x+25.
在Rt△AEM中,
∵∠AEM=22°,AM=AB﹣CE=x﹣2,tan22°= ,即 = ,解得x=20.
∴办公楼AB的高度为20m;
(2)
解:在Rt△AME中,∵cos22°= ,
∴AE= = =48m.
答:A,E之间的距离为48m.
【解析】(1)过点E作EM⊥AB于点M,设AB=x,在Rt△ABF中,由∠AFB=45°可知BF=AB=x,在Rt△AEM中,利用锐角三角函数的定义求出x的值即可;(2)在Rt△AME中,根据cos22°= 可得出结论.
练习册系列答案
相关题目
【题目】某商场经营一批进价是30元/件的商品,在市场试销中的日销售量y件与销售价x元之间满足一次函数关系.
(1)请借助以下记录确定y与x的函数关系式,并写出自变量x的取值范围;
x | 35 | 40 | 45 | 50 |
y | 57 | 42 | 27 | 12 |
(2)若日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出当销售单价x为多少元时,才能获得最大的销售利润?