题目内容
【题目】如图所示,AD是△ABC的中线,AE⊥AB,AF⊥AC,且AE=AB,AF=AC,AD=3,AB=4.
(1)求AC长度的取值范围;
(2)求EF的长度.
【答案】(1)2<AC<10;(2)EF= 6.
【解析】
(1)延长AD到M,使得AD=DM,连接MC,由“SAS”可得△ABD≌△MCD,可得AB=MC=4,∠BAD=∠M,由三角形三边关系可求解;
(2)由“SAS”可证△AEF≌△CMA,可得EF=AM=6.
(1)延长AD到M,使得AD=DM,连接MC,
∴AD=DM,AM=2AD=6,
∵AD是△ABC的中线,
∴BD=CD,
∵在△ABD和△MCD中,
,
∴△ABD≌△MCD(SAS),
∴AB=MC=4,∠BAD=∠M,
∵AM-MC<AC<AM+MC
∴2AD-MC<AC<2AD+MC
∴2<AC<10
(2)∵AB=AE,
∴AE=MC,
∵AE⊥AB,AF⊥AC,
∴∠EAB=∠FAC=90°,
∵∠FAC+∠BAC+∠EAB+∠EAF=360°,
∴∠BAC+∠EAF=180°,
∵∠CAD+∠M+∠MCA=180°,
∴∠CAD+∠BAD+∠MCA=180°,
即∠BAC+∠MCA=180°,
∴∠EAF=∠MCA.
∵在△AEF和△CMA中,
,
∴△AEF≌△CMA(SAS),
∴EF=AM=6
【题目】探究函数的图象与性质,下面是探究过程,请补充完整:
()下表是与的几组对应值.
函数的自变量的取值范围是__________, 的值为__________.
()描出以上表中各对对应值为坐标的点,并画出该函数的大致图象.
()进一步探究函数图象发现:
①函数图象与轴有__________个交点,所以对应方程有__________个实数根.
②方程有__________个实数根.
③结合函数的图象,写出该函数的一条性质__________.