题目内容
【题目】如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6 ,那么AC= .
【答案】16
【解析】
解:在AC上截取CG=AB=4,连接OG,
∵四边形BCEF是正方形,∠BAC=90°,
∴OB=OC,∠BAC=∠BOC=90°,
∴B、A、O、C四点共圆,
∴∠ABO=∠ACO,
∵在△BAO和△CGO中
,
∴△BAO≌△CGO,
∴OA=OG=6 ,∠AOB=∠COG,
∵∠BOC=∠COG+∠BOG=90°,
∴∠AOG=∠AOB+∠BOG=90°,
即△AOG是等腰直角三角形,
由勾股定理得:AG= =12,
即AC=12+4=16,
所以答案是:16.
练习册系列答案
相关题目