题目内容
【题目】(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象交于A(2,3),B(-3,n)两点.
(1)求一次函数和反比例函数的解析式;
(2)若P是y轴上一点,且满足△PAB的面积是5,求OP的长.
【答案】(1)y=x+1;(2)1
【解析】试题分析:(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;设直线AB解析式为y=kx+b,将B坐标代入反比例解析式中求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
(2)如图所示,对于一次函数解析式,令x=0求出y的值,确定出C坐标,得到OC的长,三角形ABP面积由三角形ACP面积与三角形BCP面积之和求出,由已知的面积求出PC的长,即可求出OP的长.
解:(1)∵反比例函数y=的图象经过点A(2,3),
∴m=6.
∴反比例函数的解析式是y=,
∵B点(﹣3,n)在反比例函数y=的图象上,
∴n=﹣2,
∴B(﹣3,﹣2),
∵一次函数y=kx+b的图象经过A(2,3)、B(﹣3,﹣2)两点,
∴,
解得:,
∴一次函数的解析式是y=x+1;
(2)对于一次函数y=x+1,令x=0求出y=1,即C(0,1),OC=1,
根据题意得:S△ABP=PC×2+PC×3=5,
解得:PC=2,
则OP=OC+CP=1+2=3或OP=CP﹣OC=2﹣1=1.
练习册系列答案
相关题目