题目内容
【题目】如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标.
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
【答案】
(1)
解:
∵y=﹣x+3与x轴交于点A,与y轴交于点B,
∴当y=0时,x=3,即A点坐标为(3,0),
当x=0时,y=3,即B点坐标为(0,3),
将A(3,0),B(0,3)代入y=﹣x2+bx+c,
得,解得
∴抛物线的解析式为y=﹣x2+2x+3
(2)
解:∵OA=OB=3,∠BOA=90°,
∴∠QAP=45°.
如图①所示:∠PQA=90°时,设运动时间为t秒,则QA=t,PA=3﹣t.
在Rt△PQA中,,即:,解得:t=1;
如图②所示:∠QPA=90°时,设运动时间为t秒,则QA=t,PA=3﹣t.
在Rt△PQA中,,即:,解得:t=.
综上所述,当t=1或t=时,△PQA是直角三角形.
(3)
解:
如图③所示:
设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t,点Q的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),则FQ=3t﹣t2.
∵EP∥FQ,EF∥PQ,
∴EP=FQ.即:3﹣t=3t﹣t2.
解得:t1=1,t2=3(舍去).
将t=1代入F(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),得点F的坐标为(2,3).
(4)
解:
如图④所示:
设运动时间为t秒,则OP=t,BQ=(3﹣t).
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴点M的坐标为(1,4).
∴MB==.
当△BOP∽△QBM时,即:,整理得:t2﹣3t+3=0,
△=32﹣4×1×3<0,无解:
当△BOP∽△MBQ时,即:,解得t=.
∴当t=时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.
【解析】(1)先由直线AB的解析式为y=﹣x+3,求出它与x轴的交点A、与y轴的交点B的坐标,再将A、B两点的坐标代入y=﹣x2+bx+c,运用待定系数法即可求出抛物线的解析式;
(2)由直线与两坐标轴的交点可知:∠QAP=45°,设运动时间为t秒,则QA=t , PA=3﹣t,然后再图①、图②中利用特殊锐角三角函数值列出关于t的方程求解即可;
(3)设点P的坐标为(t,0),则点E的坐标为(t,﹣t+3),则EP=3﹣t,点Q的坐标为(3﹣t,t),点F的坐标为(3﹣t,﹣(3﹣t)2+2(3﹣t)+3),则FQ=3t﹣t2 , EP∥FQ,EF∥PQ,所以四边形为平行线四边形,由平行四边形的性质可知EP=FQ,从而的到关于t的方程,然后解方程即可求得t的值,然后将t=1代入即可求得点F的坐标;
(4)设运动时间为t秒,则OP=t,BQ=(3﹣t),然后由抛物线的解析式求得点M的坐标,从而可求得MB的长度,然后根据相似相似三角形的性质建立关于t的方程,然后即可解得t的值.