题目内容
【题目】同学们知道:“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.”
(1)请写出它的逆命题 ;该逆命题是一个 命题(填“真”或“假”)
(2)若你的判断是真命题请写出证明过程(要求画图,并写出已知,求证).若是假命题,请说明理由.
【答案】(1)在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,真;(2)已知,在Rt△ABC中,∠A=30°,∠ACB=90°.求证:BC=AB.
【解析】
(1)写出逆命题,并判断是真命题;
(2)首先写出已知、求证,画出图形,借助等边三角形的判定和性质证明或借助三角形的外接圆证明.
解:(1)原命题的逆命题为:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半,该逆命题是一个真命题;
(2)已知,在Rt△ABC中,∠A=30°,∠ACB=90°.
求证:BC=AB.
证明:
证法一:如图1所示,延长BC到D,使CD=BC,连接AD,易证AD=AB,∠BAD=60°.
∴△ABD为等边三角形,
∴AB=BD,
∴BC=CD=AB,即BC=AB.
证法二:如图2所示,取AB的中点D,
连接DC,有CD=AB=AD=DB,
∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.
∴△DBC为等边三角形,
∴BC=DB=AB,即BC=AB.
证法三:如图3所示,在AB上取一点D,使BD=BC,
∵∠B=60°,
∴△BDC为等边三角形,
∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°=30°=∠A.
∴DC=DA,即有BC=BD=DA=AB,
∴BC=AB.
证法四:如图3所示,作△ABC的外接圆⊙D,∠C=90°,AB为⊙O的直径,
连DC,有DB=DC,∠BDC=2∠A=2×30°=60°,
∴△DBC为等边三角形,
∴BC=DB=DA=AB,即BC=AB.