题目内容
【题目】如图,在△ABC中,AB=AC=2 ,∠BAC=120°,点D,E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为 .
【答案】3 ﹣3
【解析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.
∵AB=AC=2 ,∠BAC=120°,
∴BN=CN,∠B=∠ACB=30°.
在Rt△BAN中,∠B=30°,AB=2 ,
∴AN= AB= ,BN= =3,
∴BC=6.
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠CAE=60°,
∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
在△ADE和△AFE中, ,
∴△ADE≌△AFE(SAS),
∴DE=FE.
∵BD=2CE,BD=CF,∠ACF=∠B=30°,
∴设CE=2x,则CM=x,EM= x,FM=4x﹣x=3x,EF=ED=6﹣6x.
在Rt△EFM中,FE=6﹣6x,FM=3x,EM= x,
∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+( x)2,
解得:x1= ,x2= (不合题意,舍去),
∴DE=6﹣6x=3 ﹣3.
所以答案是:3 ﹣3.
(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.
∵AB=AC=2 ,∠BAC=120°,
∴∠ACB=∠B=∠ACF=30°,
∴∠ECG=60°.
∵CF=BD=2CE,
∴CG=CE,
∴△CEG为等边三角形,
∴EG=CG=FG,
∴∠EFG=∠FEG= ∠CGE=30°,
∴△CEF为直角三角形.
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠CAE=60°,
∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
在△ADE和△AFE中, ,
∴△ADE≌△AFE(SAS),
∴DE=FE.
设EC=x,则BD=CD=2x,DE=FE=6﹣3x,
在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,
EF= = x,
∴6﹣3x= x,
x=3﹣ ,
∴DE= x=3 ﹣3.
所以答案是:3 ﹣3.
【考点精析】通过灵活运用勾股定理的概念和旋转的性质,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了即可以解答此题.