题目内容

如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则 S△ABD:S△ACD=


  1. A.
    4:3
  2. B.
    3:4
  3. C.
    16:9
  4. D.
    9:16
A
分析:首先过点D作DE⊥AB,DF⊥AC,由AD是它的角平分线,根据角平分线的性质,即可求得DE=DF,由△ABD的面积为12,可求得DE与DF的长,又由AC=6,则可求得△ACD的面积.
解答:过点D作DE⊥AB,DF⊥AC,垂足分别为E、F…(1分)
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,…(3分)
∴S△ABD=•DE•AB=12,
∴DE=DF=3…(5分)
∴S△ADC=•DF•AC=×3×6=9…(6分)
∴S△ABD:S△ACD=12:9=4:3.
故选A.
点评:此题考查了角平分线的性质.此题难度不大,解题的关键是熟记角平分线的性质定理的应用,注意数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网