题目内容
【题目】如图,已知直线y=﹣x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.
(1)求抛物线的解析式;
(2)观察图象,写出不等式ax2+bx+c>﹣x+3的解集为 ;
(3)若点D的坐标为(﹣1,0),在直线y=﹣x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标.
【答案】(1)y=x2﹣4x+3;(2)x<0或x>3;(3)P1(﹣1,4),P2(1,2).
【解析】
(1)根据题意首先利用交点式得出y=a(x﹣1)(x﹣3),进而得出a的值即可;
(2)由题意直接利用函数图象得出ax2+bx+c>﹣x+3的解集即为交点两侧两图象在上面的则对应函数值大,否则就小,进而得出答案;
(3)根据题意分析①若△ABO∽△AP1D,②若△ABO∽△ADP2,进而分别得出P点坐标即可.
解:(1)由题意得出:A(3,0),B(0,3),
∵抛物线y=ax2+bx+c经过A、B、C(1,0)三点,
∴设y=a(x﹣1)(x﹣3),(a≠0),
∴a×(﹣1)×(﹣3)=3,
∴抛物线解析式为:y=x2﹣4x+3;
(2)∵A(3,0),B(0,3),
∴利用图象可得出:不等式ax2+bx+c>﹣x+3的解集为:x<0或x>3;
故答案为:x<0或x>3;
(3)由题意得:△ABO为等腰直角三角形,如图所示:
①若△ABO∽△AP1D,
则=,
∴DP1=AD=4,
∴P1(﹣1,4);
②若△ABO∽△ADP2,过点P2作P2M⊥x轴于点M,AD=4,
∵△ABO为等腰直角三角形,
∴△ADP2是等腰直角三角形,由三线合一可得:DM=AM=2=P2M,
∴MO=1,
∴P2(1,2).
练习册系列答案
相关题目