题目内容
已知a2+a=1,则代数式3﹣a﹣a2的值为_____.
如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )
A. 40° B. 50° C. 60° D. 70°
计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.
如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
一个不透明的口袋中装有三张卡片,上面分别标有数字﹣1,0,1,每张卡片除数字不同外其余均相同,文博同学从口袋中随机摸出一张卡片,记下数字后放回并搅匀;再从口袋中随机摸出一张卡片记下数字.用画树状图(或列表)的方法,求文博同学两次摸出的卡片上的数字之和为正数的概率.
如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )
A. 8.1×106 B. 8.1×105 C. 81×105 D. 81×104
一个箱子里装有个除颜色外都相同的球,其中有个红球,个黑球,个绿球.随机地从这个箱子里摸出一个球,摸出绿球的可能性是________.
求证:三角形的中位线平行于三角形的第三边,且等于第三边的一半.