题目内容
【题目】如图,四边形中,,连接,,点为中点,连接,,,则__________.
【答案】
【解析】
分别过点E,C作EF⊥AD于F,CG⊥AD于G,先得出EF为△ACG的中位线,从而有EF=CG.在Rt△DEF中,根据勾股定理求出DF的长,进而可得出AF的长,再在Rt△AEF中,根据勾股定理求出AE的长,从而可得出结果.
解:分别过点E,C作EF⊥AD于F,CG⊥AD于G,
∴EF∥CG,∴△AEF∽△ACG,
又E为AC的中点,∴F为AG的中点,
∴EF=CG.
又∠ADC=120°,∴∠CDG=60°,
又CD=6,∴DG=3,∴CG=3,
∴EF=CG=,
在Rt△DEF中,由勾股定理可得,DF=,
∴AF=FG=FD+DG=+3=,
∴在Rt△AEF中,AE=,
∴AB=AC=2AE=2.
故答案为:2.
练习册系列答案
相关题目
【题目】(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 | 频数 | 频率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合计 | ■ | 1 |
(1)写出a,b,c的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.