题目内容
【题目】如图,平行四边形ABCD的对角线AC,BD交于点O,过点B作BP∥AC,过点C作CP∥BD,BP与CP相交于点P.
(1)判断四边形BPCO的形状,并说明理由;
(2)若将平行四边形ABCD改为菱形ABCD,其他条件不变,得到的四边形BPCO是什么四边形,并说明理由;
(3)若得到的是正方形BPCO,则四边形ABCD是 .(选填平行四边形、矩形、菱形、正方形中你认为正确的一个)
【答案】(1)四边形BPCO为平行四边形;(2)四边形BPCO为矩形;(3)四边形ABCD是正方形
【解析】
试题分析:(1)根据两组对边互相平行,即可得出四边形BPCO为平行四边形;
(2)根据菱形的对角线互相垂直,即可得出∠BOC=90°,结合(1)结论,即可得出四边形BPCO为矩形;
(3)根据正方形的性质可得出OB=OC,且OB⊥OC,再根据平行四边形的性质可得出OD=OB,OA=OC,进而得出AC=BD,再由AC⊥BD,即可得出四边形ABCD是正方形.
解:(1)四边形BPCO为平行四边形,理由如下:
∵BP∥AC,CP∥BD,
∴四边形BPCO为平行四边形.
(2)四边形BPCO为矩形,理由如下:
∵四边形ABCD为菱形,
∴AC⊥BD,则∠BOC=90°,
由(1)得四边形BPCO为平行四边形,
∴四边形BPCO为矩形.
(3)四边形ABCD是正方形,理由如下:
∵四边形BPCO是正方形,
∴OB=OC,且OB⊥OC.
又∵四边形ABCD是平行四边形,
∴OD=OB,OA=OC,
∴AC=BD,
又∵AC⊥BD,
∴四边形ABCD是正方形.
【题目】某社区为了进一步提高居民珍惜谁、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每季度的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图和表:
用户季度用水量频数分布表
平均用水量(吨) | 频数 | 频率 |
3<x≤6 | 10 | 0.1 |
6<x≤9 | m | 0.2 |
9<x≤12 | 36 | 0.36 |
12<x≤15 | 25 | n |
15<x≤18 | 9 | 0.09 |
请根据上面的统计图表,解答下列问题:
(1)在频数分布表中:m= , n=;
(2)根据题中数据补全频数直方图;
(3)如果自来水公司将基本季度水量定为每户每季度9吨,不超过基本季度用水量的部分享受基本价格,超出基本季度用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?