题目内容

已知,如图①,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,点P从点A沿AB以每秒2cm的速度向点B运动,点Q从点C以每秒1cm的速度向点A运动,设点P、Q分别从点A、C同时出发,运动时间为t(秒)(0<t<6),回答下列问题:
(1)直接写出线段AP、AQ的长(含t的代数式表示):AP=______,AQ=______;
(2)设△APQ 的面积为S,写出S与t的函数关系式;
(3)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时间t,使四边形PQP′C为菱形?若存在,求出此时t的值;若不存在,说明理由.
作业宝

解:(1)∵在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,
∴AC=6,
∴由题意知:AP=2t,AQ=6-t,

(2)如图①过点P作PH⊥AC于H.
∵∠C=90°,∠A=60°,AB=12cm,
∴∠B=30°,
∴∠HPA=30°,
∵AP=2t,AH=t,
∴PH=t,
∴S=×AQ×PH=×t×(6-t)=-t2+3t;

(3)当t=4时,四边形PQP′C是菱形,
证明:如图②过点P作PM⊥AC于M,
∵CQ=t,由(2)可知,AM=AP=tcm,
∴QC=AM,当PC=PQ时,即CM=MQ=AQ=AC=2时,
∴四边形PQP′C是菱形,
即当t=4时,四边形PQP′C是菱形.
分析:(1)根据∠A=60°,AB=12cm,得出AC的长,进而得出AP=2t,AQ=6-t.
(2)过点P作PH⊥AC于H.由AP=2t,AH=t,得出PH=t,从而求得S与t的函数关系式;
(3)过点P作PM⊥AC于M,根据菱形的性质得PQ=PC,则可得出PN=QM=CM,求得t即可.
点评:此题主要考查了相似三角形的判定和性质、勾股定理、菱形的性质等知识点,是中考压轴题,难度偏大,正确利用菱形判定得出是解题关键.
练习册系列答案
相关题目
根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
精英家教网
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
 
AC(用含α的三角函数表示).
精英家教网
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
精英家教网
编写试题选取的材料是
 
(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.
根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.

材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=______AC(用含α的三角函数表示).

材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).

编写试题选取的材料是______(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网