题目内容
【题目】如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )
A.
B.
C.
D.
【答案】C
【解析】解:∵∠ABE=45°,∠A=90°,
∴△ABE是等腰直角三角形,
∴AE=AB=2,BE= AB=2 ,
∵BE=DE,PD=x,
∴PE=DE﹣PD=2 ﹣x,
∵PQ//BD,BE=DE,
∴QE=PE=2 ﹣x,
又∵△ABE是等腰直角三角形(已证),
∴点Q到AD的距离= (2 ﹣x)=2﹣ x,
∴△PQD的面积y= x(2﹣ x)=﹣ (x2﹣2 x+2)=﹣ (x﹣ )2+ ,
即y=﹣ (x﹣ )2+ ,
纵观各选项,只有C选项符合.
故选:C.
判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE、BE,然后表示出PE、QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.
练习册系列答案
相关题目
【题目】甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:
甲 | 乙 | 丙 | 丁 | |
平均数(cm) | 561 | 560 | 561 | 560 |
方差s2 | 3.5 | 3.5 | 15.5 | 16.5 |
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A. 甲 B. 乙 C. 丙 D. 丁