题目内容

【题目】如图1,已知矩形ABED(两组对边分别相等,四个内角都是直角),点C是边DE的中点,且AB=2AD.

(1)判断ABC的形状,并说明理由;

(2)保持图1ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;

(3)保持图2ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明.

2

【答案】(1)ABC是等腰直角三角形.理由见解析;

(2)DE=AD+BE.理由见解析;

(3)DE=BE-AD.理由见解析.

【解析】试题分析:(1)根据矩形的性质及勾股定理,即可判断ABC的形状;

(2)先证明△ACD≌△CBE,然后根据线段之间的关系可得AD、BE、DE长度之间的关系;(3)通过证明ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系.

试题解析:(1)ABC是等腰直角三角形.理由如下:

ADCBEC中,AD=BE,D=E=90°,DC=EC,

∴△ADC≌△BEC(SAS),

AC=BC,DCA=ECB.

AB=2AD=DE,DC=CE,

AD=DC,

∴∠DCA=45°,

∴∠ECB=45°,

∴∠ACB=180°-DCA-ECB=90°.

∴△ABC是等腰直角三角形.

(2)DE=AD+BE.理由如下:

ACDCBE中,∠ACD=CBE=90°-BCE,ADC=BEC=90°,AC=BC,

∴△ACD≌△CBE(AAS),

AD=CE,DC=EB.

DC-CE=BE-AD,

DE=AD+BE.

(3)DE=BE-AD.理由如下:

ACDCBE中,∠ACD=CBE=90°-BCE,ADC=BEC=90°,AC=BC,

∴△ACD≌△CBE(AAS),

AD=CE,DC=EB.

DC-CE=BE-AD,

DE=BE-AD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网