题目内容

【题目】定义:在△ABC中,点D,E,F分别是边AB,BC,CA上的动点,若△DEF∽△ABC(点D、E、F的对应点分别为点A、B、C),则称△DEF△ABC的子三角形,如图.

(1)已知:如图1,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA上动点,且AD=BE=CF.

求证:△DEF△ABC的子三角形.

(2)已知:如图2,△DEF△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CFAD的长.

【答案】(1)证明见解析(2)2

【解析】

(1)只要证明△DAF≌△EBD≌△FCE,可得DE=EF=DF,推出△DEF是等边三角形,推出∠DEF=EDF=B=A=60°,推出△DEF∽△ABC.可得△DEF是△ABC的子三角形;

(2)如图2中,作EHABH.首先证明△DEF是等腰直角三角形,由△DEH≌△DFA,推出AD=HE,由△BEH是等腰直角三角形,推出HE=×=1,推出AD=1,由△BDE∽△CEF,可得,由此即可求出CF.

(1)证明:如图1中,

∵△ABC是等边三角形,

∴AB=BC=AC,∠A=∠B=∠C=60°,

∵AD=BE=CF,

∴AF=BD=CE,

∴△DAF≌△EBD≌△FCE,

∴DE=EF=DF,

∴△DEF是等边三角形,

∴∠DEF=∠EDF=∠B=∠A=60°,

∴△DEF∽△ABC.

∴△DEF是ABC的子三角形.

(2)如图2中,作EHAB于H.

∵AB=AC,∠BAC=90°,

∴∠B=∠C=45°,

∵△DEF是ABC的子三角形,

∴△DEF∽△ABC,

∴DE=DF,∠EDF=90°,

∴∠ADF+∠AFD=90°,∠ADF+∠EDH=90°,

∴∠EDH=∠AFD,

∵∠DHE=∠A=90°,

∴△DEH≌△DFA,

∴AD=HE,

∵△BEH是等腰直角三角形,

∴HE=×=1,

∴AD=1,

∵∠DEC=∠DEF+∠FEC=∠B+∠BDE,

∵∠B=∠DEF=45°,

∴△BDE∽△CEF,

∴CF=2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网