题目内容
【题目】如图,在中,AB为的直径,C为上一点,P是的中点,过点P作AC的垂线,交AC的延长线于点D.
(1)求证:DP是的切线;
(2)若AC=5,,求AP的长.
【答案】(1)见解析;(2)AP=.
【解析】
(1)根据题意连接OP,直接利用切线的定理进行分析证明即可;
(2)根据题意连接BC,交于OP于点G,利用三角函数和勾股定理以及矩形的性质进行综合分析计算即可.
解:(1)证明:连接OP;
∵OP=OA;
∴∠1=∠2;
又∵P为D的中点;
∴
∴∠1=∠3;
∴∠3=∠2;
∴OP∥DA;
∵∠D=90°;
∴∠OPD=90°;
又∵OP为O半径;
∴DP为O的切线;
(2)连接BC,交于OP于点G;
∵AB是圆O的直径;
∴∠ACB为直角;
∵
∴sin∠ABC=
AC=5,则AB=13,半径为
由勾股定理的BC=,那么CG=6
又∵四边形DCGP为矩形;
∴GP=DC=6.5-2.5=4
∴AD=5+4=9;
在Rt△ADP中,AP=.
练习册系列答案
相关题目