题目内容
【题目】“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.﹣﹣苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x= ﹣2实数根的情况是( )
A.有三个实数根
B.有两个实数根
C.有一个实数根
D.无实数根
【答案】C
【解析】解:将方程变形 ﹣1=(x﹣1)2,
设y1= ﹣1,y2=(x﹣1)2,在坐标系中画出两个函数的图象如图所示:
可看出两个函数图象有一个交点(1,0).
故方程x2﹣2x= ﹣2有一个实数根.
所以答案是:C.
【考点精析】关于本题考查的抛物线与坐标轴的交点,需要了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.
练习册系列答案
相关题目
【题目】八(3)班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图(如图)
组别 | A | B | C | D |
处理方式 | 迅速离开 | 马上救助 | 视情况而定 | 只看热闹 |
人数 | m | 30 | n | 5 |
请根据表图所提供的信息回答下列问题:
(1)统计表中的m= ,n= ;
(2)补全频数分布直方图;
(3)若该校有3000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?