题目内容
【题目】如图,已知AC⊥CB,DB⊥CB,AB⊥DE,垂足为F,AB=DE,E是BC的中点.
(1)求证:BD=BC;
(2)若AC=3,求BD的长.
【答案】
(1)解:∵DE⊥AB,可得∠BFE=90°,
∴∠ABC+∠DEB=90°,
∵∠ACB=90°,
∴∠ABC+∠A=90°,
∴∠A=∠DEB,
在△ABC和△EDB中,
,
∴△ABC≌△EDB(AAS),
∴BD=BC;
(2)解:∵△ABC≌△EDB,
∴AC=BE=3,
∵E是BC的中点,
∴BC=2BE=6,
∴BD=BC=6
【解析】(1)由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC;(2)由(1)可知△ABC≌△EDB,根据全等三角形的对应边相等,得到AC=BE,由E是BC的中点,得到BD=BC=2BE.
练习册系列答案
相关题目