题目内容

【题目】如图,在△ABC中,∠B=90°,AB=4,BC=3,将△ABC绕点A逆时针旋转,使点B落在线段AC上的点D处,点C落在点E处,则C、E两点间的距离为(

A.
B.2
C.3
D.2

【答案】A
【解析】解:在△ABC中,∠C=90°,AB=4,BC=3,
∴AC=5,
∵△ABC绕点A逆时针旋转得到△AED,
∴∠DEA=∠C=90°,AD=AB=4,DE=BC=3,
∴CD=AC﹣AD=5﹣4=1,
连接CE,在Rt△CDE中,由勾股定理可得CE=
即C、E两点间的距离为
故选A.
【考点精析】根据题目的已知条件,利用勾股定理的概念和旋转的性质的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网