题目内容
【题目】已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的是( )
A.①②B.①④C.②③D.②④
【答案】A
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所给结论进行判断.
①图象开口向下,与y轴交于正半轴,能得到:a<0,c>0,
∴ac<0,故①正确;
②∵对称轴x<﹣1,
∴<﹣1,-2a>0,
∴b<2a,
∴b﹣2a<0,故②正确;
③图象与x轴有2个不同的交点,依据根的判别式可知b2﹣4ac>0,故③错误;
④当x=﹣1时,y>0,∴a﹣b+c>0,故④错误,
故选A.
练习册系列答案
相关题目
【题目】某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于,经试销发现,销售量(件)与销售单价(元)符合一次函数,所调查的部分数据如表:
销售单价(元) | 60 | 65 | 70 | |
销售量(件) | 60 | 55 | 50 |
(1)求出与之间的函数表达式;
(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?
(3)销售单价定为多少元时,该商场获得的利润恰为元?