题目内容
【题目】如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.
(1)求k和n的值;
(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.
【答案】(1)n=1,k=6.(2)当2≤x≤6时,1≤y≤3.
【解析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
(2)由k=6>0结合反比例函数的性质,即可求出:当2≤x≤6时,1≤y≤3.
(1)当x=6时,n=﹣×6+4=1,
∴点B的坐标为(6,1).
∵反比例函数y=过点B(6,1),
∴k=6×1=6;
(2)∵k=6>0,
∴当x>0时,y随x值增大而减小,
∴当2≤x≤6时,1≤y≤3.
练习册系列答案
相关题目