题目内容
【题目】如图,在直角坐标系中,已知点A(6,0),又点B(x,y)在第一象限内,且x+y=8,设△AOB的面积是S.
(1)写出S与x之间的函数解析式,并求出x的取值范围;
(2)画出(1)中所求函数的图象.
【答案】(1)0<x<8.(2)详见解析.
【解析】
(1)根据点A、B的坐标求得△AOB的底边OA与高线BC的长度;然后根据三角形的面积公式即可求得S与x的函数关系式;
(2)利用“两点确定一条直线”来画一次函数的图象;
(1)∵点B在直线y=-x+8上,∴设B(x,-x+8),
∴y=-x+8与x和y轴的交点分别为(8,0)和(0,8)∵点B在第一象限,∴其横坐标x的范围是:0<x<8;
∵A(6,0),点B(x,y),
∴OA=6,BC=y(y>0),
∴S=OABC=×6y=3y;
又∵x+y=8,
∴y=8-x,
∴S=-3x+24.
由,
解得0<x<8.
(2) ∵由(1)知,S=-3x+24(0<x<8);
令S=0,则x=8;
令x=0,则S=24,
∴一次函数S=-3x+24(x>0)经过点(8,0)、(0,24),
∴其图象如图所示:
练习册系列答案
相关题目