题目内容
【题目】(1)阅读理解:利用旋转变换解决数学问题是一种常用的方法。如图,点是等边三角形内一点,,求的度数。为利用已知条件,不妨把绕点顺时针旋转60°得,连接,则的长为_______;在中,易证,且的度数为_____,综上可得的度数为__ ;
(2)类比迁移:如图,点是等腰内的一点,。求的度数;
(3)拓展应用:如图,在四边形中,,请直接写出的长。
【答案】(1)2, 30°, 90° ;(2)90°;(3)2.
【解析】
(1)由旋转性质、等边三角形的判定可知△CP′P是等边三角形,由等边三角形的性质知∠CP′P=60°,根据勾股定理逆定理可得△AP′P是直角三角形,继而可得答案.
(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′,同理可得△CP′P是等腰直角三角形和△AP′P是直角三角形,所以∠APC=90°;
(3)如图3,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,根据勾股定理求CG的长,就可以得BD的长.
解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).
由旋转的性质知△CP′P是等边三角形;
∴P′A=PB=、∠CP′P=60°、P′P=PC=2,
在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;
∴△AP′P是直角三角形;
∴∠P′AP=90°.
∵PA=PC,
∴∠AP′P=30°;
∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.
故答案为:2;30°;90°;
(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.
由旋转的性质知△CP′P是等腰直角三角形;
∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,
在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;
∴△AP′P是直角三角形;
∴∠AP′P=90°.
∴∠APP'=45°
∴∠APC=∠APP'+∠CPP'=45°+45°=90°
(3)如图3,
∵AB=AC,
将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,
∵∠BAD=∠CAG,
∴∠BAC=∠DAG,
∵AB=AC,AD=AG,
∴∠ABC=∠ACB=∠ADG=∠AGD,
∴△ABC∽△ADG,
∵AD=2AB,
∴DG=2BC=10,
过A作AE⊥BC于E,
∵∠BAE+∠ABC=90°,∠BAE=∠ADC,
∴∠ADG+∠ADC=90°,
∴∠GDC=90°,
∴CG===2,
∴BD=CG=2.
【题目】在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:
类别 | 家庭藏书m本 | 学生人数 |
A | 0≤m≤25 | 20 |
B | 26≤m≤100 | a |
C | 101≤m≤200 | 50 |
D | m≥201 | 66 |
根据以上信息,解答下列问题:
(1)该调查的样本容量为_____,a=_____;
(2)在扇形统计图中,“A”对应扇形的圆心角为_____°;
(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.
【题目】2019年,我省中考体育分值增加到55分,其中女生必考项目为八百米跑,我校现抽取九年级部分女生进行八百米测试成绩如下:
成绩 | 3′40″及以下 | 3′41~4′ | 4′01″~4′20′ | 4′21″~4′40″ | 4′41″及以上 |
等级 | A | B | C | D | E |
百分比 | 10% | 25% | m | 20% | n |
(1)求样本容量及表格中的m和n的值
(2)求扇形统计图中A等级所对的圆心角度数,并补全统计图.
(3)我校9年级共有女生500人.若女生八百米成绩的达标成绩为4分,我校九年级女生八百米成绩达标的人数有多少?