题目内容

【题目】如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE、CF相交于点D,则①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是(
A.①
B.②
C.①②
D.①②③

【答案】D
【解析】解:∵BE⊥AC于E,CF⊥AB于F

∴∠AEB=∠AFC=90°,

∵AB=AC,∠A=∠A,

∴△ABE≌△ACF(①正确)

∴AE=AF,

∴BF=CE,

∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,

∴△BDF≌△CDE(②正确)

∴DF=DE,

连接AD,

∵AE=AF,DE=DF,AD=AD,

∴△AED≌△AFD,

∴∠FAD=∠EAD,

即点D在∠BAC的平分线上(③正确)

故选D.

【考点精析】通过灵活运用角平分线的性质定理,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网