题目内容

如图,在△ABC中,CD是高,点E、F、G分别在BC、AB、AC上且EF⊥AB,∠1=∠2,试判断DG与BC的位置关系,并说明理由.
分析:根据垂直的定义可得∠EFB=∠CDB=90°,然后根据同位角相等两直线平行可得CD∥EF,再根据两直线平行,同位角相等求出∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行证明即可.
解答:解:DG∥BC.
理由如下:∵CD是高,EF⊥AB,
∴∠EFB=∠CDB=90°,
∴CD∥EF,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠3,
∴DG∥BC.
点评:本题考查了平行线的性质与判定,是基础题,熟记平行线的性质与判定方法是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网