题目内容
【题目】如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画图:
(1)画一条线段MN,使MN=;
(2)画△ABC,三边长分别为3,,.
【答案】见解析
【解析】
(1)因为正方形网格中的每个正方形边长都是1,根据勾股定理可得,直角边长为2和3的直角三角形的斜边长是;
(2)直角边长是1和2的直角三角形的斜边长是,直角边长是2和2的直角三角形的斜边长是,与长是3的线段,使它们能首尾相接,可得所求三角形.
(1)因为=,即直角边长为2和3的直角三角形的斜边长是;所以线段MN就是所求;
(2) 因为=,即直角边长是1和2的直角三角形的斜边长是;因为=,即直角边长是2和2的直角三角形的斜边长是,它们与长是3的线段,使它们能首尾相接,所以△ABC是所求.
【题目】某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 40 | 50 | 60 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?
【题目】下表是小华同学一个学期数学成绩的记录.根据表格提供的信息,回答下列的问题:
考试类别 | 平时考试 | 期中考试 | 期末考试 | |||
第一单元 | 第二单元 | 第三单元 | 第四单元 | |||
成绩(分) | 85 | 78 | 90 | 91 | 90 | 94 |
(1)小明6次成绩的众数是 ,中位数是 ;
(2)求该同学这个同学这一学期平时成绩的平均数;
(3)总评成绩权重规定如下:平时成绩占20%,期中成绩占30%,期末成绩占50%,请计算出小华同学这一个学期的总评成绩是多少分?