题目内容

如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(,0),以OC为直径作半圆,圆心为D.

(1)求二次函数的解析式;
(2)求证:直线BE是⊙D的切线;
(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.

解:(1)∵四边形OABC是边长为2的正方形,∴A(0,2),B(2,2)。
又∵E的坐标为(,0),
,解得,
∴该二次函数的解析式为:
(2)如图,过点D作DG⊥BE于点G,

由题意,得

∵∠BEC=∠DEG,∠EGD=∠ECB=90°,
∴△EGD∽△ECB。
,即。∴DG=1。
∵⊙D的半径是1,且DG⊥BE,∴BE是⊙D的切线。
(3)由题意,得E(,0),B(2,2).

设直线BE为y=kx+h,则
,解得,
∴直线BE为:
∵直线BE与抛物线的对称轴交点为P,对称轴直线为x=1,
∴点P的纵坐标,即P(1,)。
∵MN∥BE,∴∠MNC=∠BEC。
∵∠C=∠C=90°,∴△MNC∽△BEC。∴,即。∴



(0<t<2)。
∵抛物线(0<t<2)的开口方向向下,
∴S存在最大值,当t=1时,S最大=

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网