题目内容

14、如图,三角形纸片ABC中,∠A=85°,∠B=55°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为
60°
分析:先根据三角形的内角和定理求出∠CEF+∠CFE=∠A+∠B,再根据折叠变换的性质,即可求出∠CEC′+∠CEC′的度数,然后利用两个平角的度数求解即可.
解答:解:如图,∵∠CEF+∠CFE+∠C=∠A+∠B+∠C,
∴∠CEF+∠CFE=∠A+∠B=85°+55°=140°,
又将纸片的一角折叠,使点C落在△ABC内,
∴∠C′EF+∠C′F=∠CEF+∠CFE=140°,
∴∠CEC′+∠CEC′=140°+140°=280°,
∵∠1=20°,
∴∠2=180°×2-∠CEC′+∠CEC′-∠1=360°-280°-20°=60°.
故答案为:60.
点评:本题考查了三角形的内角和定理,翻折变换的性质,作出辅助线,把图形补充完整是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网