题目内容
【题目】如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2020次变换后,等边△ABC的顶点C的坐标为( )
A.(-2 020,)B.(-2 019,)
C.(-2 018,)D.(-2 017,)
【答案】C
【解析】
先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标.
∵△ABC是等边三角形AB=3-1=2,
∴点C到x轴的距离为1+,横坐标为2,
∴C(2,),
由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),
第2次变换后点C的坐标变为(2-2,),即(0,),
第3次变换后点C的坐标变为(2-3,),即(-1,),
第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),
∴连续经过2020次变换后,等边△ABC的顶点C的坐标为(-2018,),
故选:C.
【题目】一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
销售方式 | 粗加工后销售 | 精加工后销售 |
每吨获利(元) | 1000 | 2000 |
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?