题目内容
【题目】如图,AB是⊙O的直径,点A、C、D在⊙O上,BP是⊙O的切线,连接PD并延长交⊙O于F、交AB于E,若∠BPF=∠ADC.
(1)判断直线PF与AC的位置关系,并说明你的理由;
(2)当⊙O的半径为5,tan∠P=,求AC的长.
【答案】(1)PF∥AC;理由见解析;(2)2.
【解析】
试题分析:(1)连接BC,根据三角形内角和定理求出∠CAB=∠PEB,根据平行线的判定推出即可.
(2)求出sin∠ABC=sin∠P=,代入求出即可.
(1)解:直线BP和⊙O相切,
理由:连接BC,
∵AB是⊙O直径,
∴∠ACB=90°,
∴∠ABC+∠CAB=90°,
∵直线BP和⊙O相切,
∴∠PBA=90°,
∴∠P+∠PEB=90°,
∵∠P=∠ADC,
∴∠PEB=∠CAB,
∴PF∥AC;
(2)解:由已知,得∠ACB=90°,∠P=∠ADC=∠ABC,⊙O的半径为5,
∴AB=10,
∵tan∠P=,
∴sin∠ABC=,
∴AC=AB×=2.
【题目】现如今,通过“微信运动“发布自己每天行走的步数,已成为一种时尚,“健身达人”小华为了了解他的微信朋友圈里大家的“建步走运动“情况,随机抽取了20名好友一天行走的步数,记录如下:
5640 | 6430 | 6320 | 6798 | 7325 | 8430 | 8215 | 7453 | 7446 | 6754 |
7638 | 6834 | 7325 | 6830 | 8648 | 8753 | 9450 | 9865 | 7290 | 7850 |
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
组别 | 步数分组 | 频数 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
请根据以上信息解答下列问题:
(1)填空:m= ,n= .
(2)补全频数分布直方图.
(3)根据以上统计结果,第二天小华随机查看一名好友行走的步数,试估计该好友的步数不低于7500步(含7500步)的概率.