题目内容
【题目】请写出一个解为x=2的一元一次方程:___________.
【答案】x-2=0.(答案不唯一)
【解析】
此题注意两点:必须是一元一次方程,方程的解为2.
【题目】如果点A(﹣3,y1)和点B(﹣2,y2)是抛物线y=x2+a上的两点,那么y1_____y2.(填“>”、“=”、“<”).
【题目】已知方程组甲由于看错了方程(1)中的a,得到方程组的解为 , 乙由于看错了方程(2)中的b,得到方程组的解为 , 若按正确的计算,求x+6y的值.
【题目】图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题: (1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.
(1)若∠ABC=70°,则∠MNA的度数是__.
(2)连接NB,若AB=8cm,△NBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.
【题目】为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.
(l)求请用树状图列举出三次传球的所有可能情况:
(2)传球三次后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
【题目】如图,一小球从斜坡D点处抛出,球的抛出路线可以用二次函数)y=-x2+4x刻画,斜坡OA可以用一次函数y=刻画.
(1)请用配方法求二次函数图象的最高点P的坐标;
(2)小球的落点是A,求点A的坐标
(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;
(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积,请直接写出点M的坐标。
【题目】计算:(1)1.252016×(﹣8)2015;(2)30 .
【题目】将一副直角三角板如图摆放,等腰直角三角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.
求证:△CDO是等腰三角形.