题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201207/50/ac70df9a.png)
5
5
.分析:首先过点B作BE⊥l1于E,过点D作DF⊥l1于F,由已知易证得△ADF≌△BAE,根据全等三角形的对应边相等,即可求得AE的长,然后由勾股定理,求得AB2的值,即可得该正方形的面积.
解答:
解:过点B作BE⊥l1于E,过点D作DF⊥l1于F,
∵l1与l2的距离为1,l2与l3的距离为1,l1∥l2∥l3,
∴DF=2,BE=1,∠DFA=∠AEB=90°,
∴∠ADF+∠DAF=90°,
∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∴∠DAF+∠BAE=90°,
∴∠ADF=∠BAE,
在△ADF和△BAE中,
,
∴△ADF≌△BAE(AAS)
∴AE=DF=2,
在Rt△ABE中,AB2=AE2+BE2=12+22=5,
∴S正方形ABCD=5.
故答案为:5.
![](http://thumb.zyjl.cn/pic3/upload/images/201208/4/64e0fc77.png)
∵l1与l2的距离为1,l2与l3的距离为1,l1∥l2∥l3,
∴DF=2,BE=1,∠DFA=∠AEB=90°,
∴∠ADF+∠DAF=90°,
∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∴∠DAF+∠BAE=90°,
∴∠ADF=∠BAE,
在△ADF和△BAE中,
|
∴△ADF≌△BAE(AAS)
∴AE=DF=2,
在Rt△ABE中,AB2=AE2+BE2=12+22=5,
∴S正方形ABCD=5.
故答案为:5.
点评:此题考查了正方形的性质、平行线间的距离、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目